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Outline of talk

€ From exploding sphalerons to chiral kinetic theory

€® World-lines & internal symmetries: D’Hoker-Gagné construction
of the Berezin-Marinov coherent state formalism

@ Variational derivation of chiral anomaly
€ Supersymmetry & Hamiltonian constraints

@ Pseudo-classical Grassmanians: Bargmann-Michel-Telegdi & Wong
equations

@ Non-relativistic limits, Berry’s phase & Fujikawa’s lament

€ Towards the chiral world-line Bédeker theory



Glasma: overoccupied gauge fields in a box
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Thermalization extensively
studied in this context employing
classical-statistical simulations

Berges,Schlichting,Sexty, PRD86 (2012) 074006
Schlichting PRD86 (2012) 065008

York,Kurkela,Lu,Moore, PRD89 (2014) 074036
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Clean separation of scales seen

Time evolution of string tension

1 computed from spatial Wilson

loops
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Berges,Scheffler,Sexty, PRD77 (2008) 034504
Mace,Schlichting,Venugopalan, PRD93 (2016), 074036



Probability: P(ANqg)

neq
T/ o
- O =N WA OO N

0.08
0.07
0.06

0.05
0.04
0.08 }
0.02 t

0.01

Topological transitions in the Glasma
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Mace,Schlichting,Venugopalan, PRD93 (2016), 074036

“Cooled” Glue configurations
in the Glasma are topological!
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Sphaleron transition rate scales
with string tension squared
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Exploding sphalerons

“Exploding sphalerons”: Shuryak, Zahed, PRD67 (2003) 014006

sph

= Sphaleron transition rate

-- very large in the Glasma
much larger than equilibrium rate
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Couple sphaleron background with fermions
& external EM fields to simulate ab initio
the Chiral Magnetic Effect!

Mueller,Schlichting,Sharma,PRL117 (2016) 142301
Mace,Mueller,Schlichting,Sharma, 1612.02477

Talk by Schlichting



The limits of classical-statistical simulations

Slide by Niklas Mueller
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Kinetic evolution of the chiral magnetic current

€ Subsequent evolution of the chiral magnetic current depends
on typical time scales for scattering, for sphaleron transitions,
and E&M conductivity in the system

@ Significant work on chiral kinetic theory

Son,Yamamoto, PRL109 (2012), 181602; PRD87 (2013) 085016
Stephanov, Yin, PRL109 (2012) 162001

Chen, Son, Stephanov, Yee, Yin, PRL 113 (2014) 182302
Chen, Son, Stephanov, PRL115 (2015) 021601
Chen,Pu,Wang,Wang, PRL110 (2013) 262301
Gao,Liang,Pu,Wang,Wang, PRL109 (2012) 232301
Stone,Dwivedi,Zhou, PRD91 (2015) 025004

Zahed, PRL109 (2012) 091603;

Basar,Kharzeev,Zahed, PRL111 (2013)161601
Stephanov,Yee,Yin, PRD91 (2015) 125014

Fukushima, PRD92 (2015) 054009

Manuel, Torres-Rincon, PRD90 (2014) 074018
Hidaka,Pu,Yang, arXiv:1612.04630

€ We will discuss here a novel approach based on the

world-line formalism in QCD ,
Niklas Mueller and RV, arXiv: 1701.03331 and 1702.01233



World-line formalism: preliminaries

Review: Corradini, Schubert, arXiv:1512.08694
Also, Strassler, NPB385 (1992) 145

Based on Schwinger’s proper time trick:

log(o) / / / dte V' = / % (e_ot — e_t)

One loop effective action of massless scalar field £ = ®TD*®

coupled to background Abelian field _ 9 —ioA
Dy = 0, —1gA,

['[A] = —log [det(—DQ)] = —Tr (log(—DQ)) — / dTTTr exp(—TD?)
. 0 .

00 T
= d;: N /D:E’Pexp [—/ dr (iCEQ + 1gA[z(T)] 1‘)]
0 0 €

T
with A/ — /Dp exp(—E/ dTepQ) € is the Einbein: square root of
0

(N

1D metric



World-line formalism: vector and axial vector fields

S[A, B] = / P (i) + A+ 5 B) ¥

A is a vector gauge field and B is an auxilliary axial vector gauge field

Fermion effective action:
—WIA, B] =log det (0) with 6 = if) + A + ~5 1B
W[A, B] =Wgr+1W;

Focus first on the real part:

1 - 1 -
Wgr = —3 log det (22> = —gTr log (22)

22 = (p— A)Is + %FMFVFW[A] (.4 LB 0 )
A= 0 A—-B
Flw = 30 Ay — 0,4, — [A,, A :



World-line formalism: coherent states

Doubling dimension of Dirac matrices & extension of Clifford
algebra essential for coherent state spinor representation

r — 0 v r. — 0 r. — 0 24
7] Vu 0 ; 5 Vs 0 ) 6 —l]I4 0
6 D’Hoker, Gagne, hep-ph/9508131
. Iy O _
FT = —1 H FA — (6 —I[_;) {FT’FA} =0

Coherent states can be used to generate finite dimensional
representations of internal symmetry groups

Berezin,Marinov, Annals Phys. 104 (1977) 336

a,fzé(F,.:i:zTr*g), (at,a} =6, {aF,at}={a=,a-} =0,

(Olay = (016r a7 |0) =0rl6)  (Blaf =(06r  a|0) =6r|6)

3 34 18\ /A r=1.2.3
[0 = [ @5 18)01=1



Grassmanial path integral representation

1 ~ 1 [ -
Wgr = —=Tr log (22) = —/ Trig exp (—ETEQ)
8 8 Jo 2

In the fermionic coherent state Grassmanian representation,

Ohnuki,Kashiwa Prog.Theo.Phys.60 (1978)548
the trace can be represented as D Hokey, Gagne, hon ah /9512080

Trig exp (—%TiQ) = /d4z d°0 (z, —0| exp (—%TEQ) 2, 0)
and rewritten as the quantum mechanical path integral...

- -
— [dr Lp(T) — [dr ﬁn(‘r))

1 [dT |
|:> §/TN/Dm/Dn,trCP(e +e
0 p AP

with the “point particle” Lagrangian
21, . i€
Lojr(r) = 5=+ Statha — i,(A% B) + 0, Fyu[A £ B

Switched here from 3-D complex 6 basis to that of 6-D Majorana fermions
- simple mnemonic: M»vV2y



Grassmanial path integral representation
1 _ 1 [ 5

Wgr = —=Tr log (22) = —/ Trig exp (—ETEQ)
8 8 /g 2

In the fermionic coherent state Grassmanian representation,

Ohnuki,Kashiwa Prog.Theo.Phys.60 (1978)548
the trace can be represented as D Hokey, Gagne, hon ah /9512080

Trig exp (—%TEQ) = /d4z d°0 (z, —0| exp (—%TEQ) 2, 0)

and rewritten as the quantum mechanical path integral...

T T
dr Lr(7) — [ dr Lr(7T)
%/ N/Da/Dz,utrc ( Of I +e Of ) )

The vector current can be defined as (putting B*=0)

oWgr

<]/Y(y)> SA = 3 / ?N Dx D jX’Cl' (6_ JEdreo(r) +e~ Iy dTﬁR(T))
H 0 PBC APC

T
el /dT 0,00, 1, 0 (x(r) ~y)  Can check that 0, 7V = 0



Phase of the determinant and the chiral anomaly

@ The phase of the complex determinant is well known

to be the origin of the chiral anomaly
K. Fujikawa, PRL42 (1979)1195; PRD21 (1980) 2848

@ Its treatment in a world line path integral

framework is also well known

L. Alvarez-Gaume, E. Witten, NPB234 (1984) 269
A.M. Polyakov, Gauge fields and strings (1987), section 6.3

¥ We will adopt a different regularization (due to D’Hoker&Gagne)
and apply it to derive the quantity of interest

Mueller, Venugopalan, 1701.03331 & 1702.01233



Phase of the determinant and the chiral anomaly

1 0 6
Wi = — arg det 2] L (0 0)
with
Q=T,(p. —A,)—il;',['sI'csB,

Using a trick due to D’Hoker & Gagne, can be rewritten in a form
very much like that for the real part...

1 oo
= da/dTTr{Me 5 <>}
—1 0

where the trace insertion is M — I'7A

A= (2F5F6[aﬂa B#] + [].—‘#_, Fl/]{aﬂf- BII}FSFG)

The parameter a breaks chiral symmetry explicitly
- setting it to 1 restores it



Phase of the determinant and the chiral anomaly

The axial vector current can be expressed as

. i6Wr £ T OM_ _ers
_ o= = [ar ! - -~
<j,u (y)> 5B,u (y) ‘B 0 39 '0/ r {()B#(y)e }B:O

An advantage of the D’Hoker-Gagné construction is that the axial
current has the same world-line structure as its vector counterpart

After some algebra:
i) expressing above as a path integral,
ii) separating zero & non-zero modes (the I, insertion makes

PBC and Fermion zero modes feasible in the path integral construction)

iii) and fixing Fock-Schwinger gauge about the zero modes,
one can show that

(% 4

See our paper 1702.01233 for details

1 n %
8M<J2(y)> = ﬁTT (FMVFM )

T

which is the well known anomaly equation



Back to the real part: semi-classical world-lines

Eg., G. Dunne, C. Schubert, hep-th/0507174
Consider our simpler case of scalar particles in a background field

00 o T 2
['[A] = / ge_m“T / Dxexp [— / dr [ = +ieA - i
JO T Jz(T)==z(0) JO 4

Rewrite exactly as
1 1
2 / Dz K, ( 'm.\/ / du :ifz) exp [—ie / du A - :i?}
Jz(1)==z=(0) 0 JO
(1)=a . ,

| 27 1 | ! 1
—/D.T 177 ©XP [— (m / duir2+ie/ duA-i'H
m (f()l du 1,2) 0 0
1
for 'm.\// duz? > 1
Jo

Stationary phase “world-line instanton” of functional integral

Ly

m—— = 1eF,, T,
V Jo du 22

Equation of motion of scalar particle in background Abelian field

4]

12




Spinning (& colored) pseudo-classical world-lines

Brink,Di Vecchia,Howe, NPB118 (1977) 76
Balachandran,Salomonson,Skagerstam,Winnberg,PRD15 (1978) 2308
Barducci, Casalbuni, Lusanna, NPB124 (1977) 93

For a consistent treatment of the Hamiltonian dynamics, introduce
Lagrange multipliers in action to impose physical constraints

S = /O ar {pua:“ 42 [+ s - }

E , 1
with H = (72 +m? + it Fu”) + 5 (" +mys) x

Here € and x are the vierbein fields that impose the mass shell and helicity
constraints of the theory
=1, "+ my; is a supersymmetric charge generating an N=1 SUSY algebra

Canonical momenta:

or iR m?2 | |
97 " 2z th

where u, is the “anomalous” velocity m% = m? + i* F, "



Spinning (& colored) pseudo-classical world-lines

Pseudo-classical equations of motion for spinning particles in
the (x,p,y) phase space:

mp it + — OO Fog b + FM, = 0
QmR
. 1 :
PH — Fy” =0 s =0
mp

One can also obtain EOM for the Pauli-Lubanski vector
i 14 (o)
E,u — _§€,uypap ¢pw SM — Z/ub/h

S = L (FuS +0"Fuls) s = totrtats
For homogeneous fields, this is the covariant form of

the Bargmann-Michel-Telegdi equation

Extension of framework to colored Grassmanians gives

the Wong equations for precessing color charges
Jalilian-Marian,Jeon,Venugopalan,Wirstam, PRD62 (2000) 045020



Non-relativistic limit & Berry phase

Carefully taking non-relativistic limit v/c << 1

of the world-line action, Thomas precession term Larmor term
n— A)° 2
H = mc® + (p c) + A%(z) — S-([U/C—A/(m(: )} xE) B-S
2m 2me m

In the adiabatic limit B-S ~ 0 spln.ﬂlps a.re.su“ppressc’e’d ar.'nd )
m particle spin is “slaved” to its motion

Transition amplitude from initial to final states:

T(ps,pi-+) = (pg. v (ps)le™ LT (pi)
T'(ps,pi,+) = /(H dsm) (Hd311> where the Berry connection is
N A(p) = —=i{sb™ (p)| Vo™ (p))
< [ e &P 0 )l (95-0)

exp< / dtp - Alp )) T



Non-relativistic limit & Berry phase
Transition amplitude from initial to final states:

: ¢+(pz')>

T(pg,pi-+) = (pf, 0" (pyr)le

T'(ps,pi,+ /Dle e\p( /dt [x p— HD

ﬁ—mc*-i—(p ‘?n/c) +4O() ‘p.A(p)\

L o -

Note: identical derivation if mass is replaced by large chemical potential

Note further that to recover this dynamics one has to take non-relativistic,
adiabatic limits of the real part of the effective action...

The chiral anomaly in contrast arises from the imaginary phase and is
independent of any kinematic limits...



Relation of Berry phase and anomaly?

Fujikawa’s lament... hep-ph/0501166

The notion of Berry’s phase is known to be useful in various physical contexts [17]-[18],
and the topological considerations are often crucial to obtain a qualitative understanding
of what is going on. Our analysis however shows that the topological interpretation of
Berry’s phase associated with level crossing generally fails in practical physical settings
with any finite 7. The notion of “approximate topology” has no rigorous meaning, and
it is important to keep this approximate topological property of geometric phases asso-
ciated with level crossing in mind when one applies the notion of geometric phases to
concrete physical processes. This approximate topological property is in sharp contrast
to the Aharonov-Bohm phase [8] which is induced by the time-independent gauge poten-
tial and topologically exact for any finite time interval 7. The similarity and difference
between the geometric phase and the Aharonov-Bohm phase have been recognized in the
early literature [1, 8], but our second quantized formulation, in which the analysis of the
geometric phase is reduced to a diagonalization of the effective Hamiltonian, allowed us
to analyze the topological properties precisely in the infinitesimal neighborhood of level
crossing.

and... hep-ph/0511142

What we have shown in the present paper is that this

expectation is not realized, and the similarity between the two is superfi-

cial.



Towards the anomalous Bodeker theory

In hep-ph/9910299, we developed the world-line formalism that
reproduced the non-Abelian Boltzmann-Langevin
framework for hot QCD developed by Bodeker to describe

sphaleron dynamics Bodeker, PLBA426 (1998) 351; NPB559 (2000)502
Litim,Manuel,NPB562 (1999)237

Following the construction developed here,
the framework can be extended
to construct an anomalous version of the Bodeker theory

For an alternative treatment, see
Akamatsu,Yamamoto, PRD90 (2014)125031
Akamatsu,Rothkopf,Yamamoto,JHEP1603 (2016)210



Thank you for your attention!



Berry connection and chiral kinetic theory

Son, Yamamoto,...

Canonical example: two component spinor
satisfying the Weyl equation (o - p)up e ::|p|up

has Berry connection iA, =uV up

and curvature Q, =V, x A,=+

2Ipl2
Fictitious magnetic field associated with a “magnetic monopole”

H 3 D.Xiao et al., PRL95 (2005)137204
Son and Yamamoto consider the action Dol et ol PLE20 (2006) 373

S = [ dtlp'z' + A'(z)z' — A" —eq(x A%z
- [ dttp'ss + 4'@)i - A - o) - @)

&p [ 0 o on
j=—/ P [ #Jr(szp ”)epB+epQ xQ]+Exa

dp ox
dp
o =/(27r) Qpong




Relation of Berry phase to anomaly

@ A reading of the work of Stone et al.

suggests that the content of the chiral kinetic equations can

be obtained from the covariant BMT equation
Stone,Dwivedi,Zhou, PRD91 (2015) 025004

@ In our work, this arises entirely from the

real part of the effective action...



Berry connection and chiral kinetic theory

Son, Yamamoto,...

Canonical example: two component spinor
satisfying the Weyl equation (o' . p)'u.p = ::|p|'u.p

has Berry connection iA, = u! Vp-u.p

and curvature Q, =V, x A,=+

2Ipl2
Fictitious magnetic field associated with a “magnetic monopole”

H 3 D.Xiao et al., PRL95 (2005)137204
Son and Yamamoto consider the action Dol et ol PLE20 (2006) 373

5= / d[p'st + A(2)i — Ap)F — ep(z) — A(2))

and derive the kinetic theory relation

- d? c)




